InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Find the value of k for A2 - kA - 14I = 0, if A = \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\)1. -52. 53. 34. -3 |
|
Answer» Correct Answer - Option 2 : 5
Calculation: A2 = A × A ⇒ A2 = \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) × \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) ⇒ A2 = \(\begin{bmatrix} 24& 25 \\ 20 & 29 \end{bmatrix}\) Given A satisfy the equation A2 - kA - 14I = 0 ⇒ \(\begin{bmatrix} 24& 25 \\ 20 & 29 \end{bmatrix}\) - k \(\begin{bmatrix} 2& 5 \\ 4 & 3 \end{bmatrix}\) - 14 \(\begin{bmatrix} 1& 0 \\ 0 & 1 \end{bmatrix}\) = \(\begin{bmatrix} 0& 0 \\ 0 & 0 \end{bmatrix}\) ⇒ \(\begin{bmatrix} 24-2k-14&25-5k\\20-4k&29-3k-14\end{bmatrix}\) = \(\begin{bmatrix} 0& 0 \\ 0 & 0 \end{bmatrix}\) ⇒ 25 - 5k = 0 ⇒ k = 5 |
|
| 2. |
If the A = \(\begin{bmatrix} -1& 3 \\ 4 & -2 \end{bmatrix}\) satisfies equation A2 + 3A - 10I = 0, find A-1.1. \({1\over10}\begin{bmatrix} -2& -3 \\ 4 & 1 \end{bmatrix}\)2. \({1\over10}\begin{bmatrix} -2& 3 \\ 4 & -1 \end{bmatrix}\)3. \({1\over10}\begin{bmatrix} 2& 3 \\ 4 & 1 \end{bmatrix}\)4. \({1\over10}\begin{bmatrix} 2& -3 \\ -4 & 1 \end{bmatrix}\) |
|
Answer» Correct Answer - Option 3 : \({1\over10}\begin{bmatrix} 2& 3 \\ 4 & 1 \end{bmatrix}\) Calculation: Given A satisfies the equation A2 + 3A - 10I = 0 Multiply the equation by A-1 ⇒ A-1A2 + 3 A-1A - 10A-1I = 0 ⇒ A + 3I - 10 A-1 = 0 ⇒ \(\begin{bmatrix} -1& 3 \\ 4 & -2 \end{bmatrix}\) + 3 \(\begin{bmatrix} 1&0 \\ 0 & 1 \end{bmatrix}\) - 10 A-1 = \(\begin{bmatrix} 0& 0 \\ 0 & 0 \end{bmatrix}\) ⇒ \(\begin{bmatrix} -1+3&3+0\\4+0&-2+3\end{bmatrix}\) = 10 A-1 ⇒ A-1 = \({1\over10}\begin{bmatrix} 2& 3 \\ 4 & 1 \end{bmatrix}\) |
|
| 3. |
If \(\begin{bmatrix} 1 & -4 & 3 \\\ 0 & 6 & -7 \\\ 2 & 4 & λ \end{bmatrix}\) is not an invertible matrix, then what is the value of λ ? |
|
Answer» Correct Answer - Option 3 : -8 Concept: If A is not an invertible matrix then |A| = 0 If A is a singular matrix then |A| = 0 Calculation: Given A = \(\begin{bmatrix} 1 & -4 & 3 \\\ 0 & 6 & -7 \\\ 2 & 4 & λ \end{bmatrix}\) is not an invertible matrix. ⇒ A is a singular matrix. ⇒ |A| = 0 ⇒ \(\begin{vmatrix} 1 & -4 & 3 \\\ 0 & 6 & -7 \\\ 2 & 4 & λ \end{vmatrix}\) = 0 ⇒ 1(\(\rm 6\lambda + 28 \)) + 4 (0 + 14) + 3 (0 - 12) = 0 ⇒ \(\rm 6\lambda + 28 + 56 - 36 = 0\) ⇒ \(\rm 6\lambda + 48 = 0\) ⇒ \(\rm \lambda = - 8\) Hence, if \(\begin{bmatrix} 1 & -4 & 3 \\\ 0 & 6 & -7 \\\ 2 & 4 & λ \end{bmatrix}\) is not an invertible matrix, then the value of λ = - 8 |
|
| 4. |
If \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\) is not an invertible matrix, then what is the value of λ ?1. -12. 03. 14. 2 |
|
Answer» Correct Answer - Option 3 : 1 Concept: If the matrix A is not an invertible matrix then | A | = 0 If the matrix A is the non-singular matrix then | A | ≠ 0
Calculations: Given, A = \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\)is not an invertible matrix As we know, If the matrix A is non invertible matrix then | A | = 0 ⇒ \(\begin{vmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{vmatrix}\) = 0 ⇒ 1\(\rm (-8\lambda - 10)+3(2\lambda-20)+2(4+32)\) = 0 ⇒ \(\rm -8\lambda - 10+6\lambda-60+72 = 0\) ⇒\(\rm -2\lambda +2 = 0\) ⇒\(\rm \lambda = 1\) Hence, If \(\begin{bmatrix} 1 & -3 & 2 \\\ 2 & -8 & 5 \\\ 4 & 2 & λ \end{bmatrix}\) is not an invertible matrix, then the value of λ is 1. |
|
| 5. |
Let \(\Delta = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\) and \(\Delta_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\), then1. Δ1 = -Δ 2. Δ1 ≠ Δ3. Δ1 - Δ = 04. Δ1 = Δ = 0 |
|
Answer» Correct Answer - Option 3 : Δ1 - Δ = 0 Explanation: \(Δ = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\) and \(Δ_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\) Calculating the determinant of Δ1 : \(Δ_1 = \begin{vmatrix} A & B & C \\\ x & y & z \\\ zy & zx & xy \end{vmatrix}\) Δ1 = A × (x × y2 - x × z2) - B × (x2 × y - z2 × y) + C × (x2 × z - y2 × z) = A × x (y2 - z2) - B × y (x2 - z2) + C × z (x2 - y2).............(1) Calculating the determinant of Δ about first column: \(Δ = \begin{vmatrix} Ax & x^2 & 1 \\\ By & y^2 & 1 \\\ Cz & z^2 & 1 \end{vmatrix}\) Δ = A × x (y2 - z2) - B × y (x2 - z2) + C × z (x2 - y2)............(2) If we subtract (1) and (2) Δ1 - Δ = 0 Hence option 3 is the correct answer. |
|
| 6. |
A square matrix A satisfies A2=I-A , where I is the identity matrix. If An =5A - 3I, find the value of n. |
|
Answer» The value of n will be 5 Explanation: We know that I x A = A A2 = I - A Thus, A5 = 5A - 3I |
|
| 7. |
The inverse of the matrix \(\rm \begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}\)is1. \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & -2+3i \end{bmatrix}\)2. \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\)3. \( \frac{1}{12}\begin{bmatrix} 2+3i & i\\ -i & 2-3i \end{bmatrix}\)4. \( \frac{1}{12}\begin{bmatrix} 2-3i & -i\\ i & 2+3i \end{bmatrix}\) |
|
Answer» Correct Answer - Option 2 : \( \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\) Concept: For a 2 x 2 matrix there is a short-cut formula for inverse as given below \(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\) Calculation: A we know that inverse of matrix \(\rm {\begin{bmatrix} a & & b\\ c& & d \end{bmatrix}}^{-1} = \frac{1}{(ad-bc)}\begin{bmatrix} d & & -b\\ -c& & a \end{bmatrix}\) ⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{(2+3i)(2-3i)-1}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\) ⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{4+9-1}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\) ⇒ \({\begin{bmatrix} 2+3i & -i\\ i & 2-3i \end{bmatrix}}^{-1}= \frac{1}{12}\begin{bmatrix} 2-3i & i\\ -i & 2+3i \end{bmatrix}\) Hence, option 2 is correct. |
|
| 8. |
Consider the following statements:1. If A′ = A; then A is a singular matrix, where A′ is the transpose of A.2. If A is a square matrix such that A3 = I, then A is non-singular.Which of the statements given above is/are correct ?1. 1 only 2. 2 only 3. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 2 : 2 only Concept: A matrix is singular if and only if its determinant is zero.
Calculation: If A′ = A; where A′ is the transpose of A then |A| = |A'| But it is not necessary that |A| = 0, so A is not a singular matrix. Hence, Statement 1 is wrong.
Given, A3 = I Taking determinants both sides, we get ⇒|A3 | = |I| = 1 ⇒ |A| = 1 Here, |A|≠ 0 so, A is a non-singular matrix Hence, option (2) is correct. |
|
| 9. |
Consider the following statements in respect of a square matrix A and its transpose AT :1. A + AT is always symmetric.2. A - AT is always anti-symmetric.Which of the statements given above is / are correct?1. 1 only2. 2 only3. Both 1 and 24. Neither 1 nor 2 |
|
Answer» Correct Answer - Option 3 : Both 1 and 2 Concept: Symmetric matrix is a square matrix that is equal to its transpose. i.e. A = AT. A skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. i.e. AT = - A (A + B)T = (A)T + (B)T (AT)T = A Calculations: Given, A is any square matrix and AT is transpose matrix A Consider the statement "A + AT is always symmetric." We know that "a symmetric matrix is a square matrix that is equal to its transpose." i.e. A = AT. Consider, the matrix A + AT ....(1) Taking transpose of the matrix A + AT (A + AT)T = (A)T + (AT)T ⇒(A + AT)T = (A)T + A ⇒(A + AT)T = A + (A)T ⇒ A + AT is symmetric. Hence, the statement "A + AT is always symmetric is true.
Consider the statement "A - AT is always anti-symmetric" A skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. i.e. AT = - A Consider, the matrix A - AT ....(1) Taking transpose of the matrix A - AT (A - AT)T = (A)T - (AT)T ⇒(A - AT)T = (A)T - A ⇒(A - AT)T = - (A - AT) ⇒ A - AT is symmetric. Hence, the statement "A - AT is always symmetric is true. Hence, the following statements in respect of a square matrix A and its transpose AT : 1. A + AT is always symmetric. 2. A - AT is always anti-symmetric. both are correct |
|
| 10. |
If A and B are symmetric matrices of the same order, then (AB' - BA') is:1. Skew symmetric matrix2. Symmetric matrix3. Null matrix4. Identity matrix |
|
Answer» Correct Answer - Option 1 : Skew symmetric matrix Concept: We have various matrix identities as,
Calculation: A and B are symmetric matrices As we know that for symmetric matrices, we have A = A' and B = B' (AB' - BA') = AB - BA ∵ (A ± B)' = A' ± B' (AB - BA)' = (AB)' - (BA)' ∵ (AB)' = B'A' ⇒ (AB - BA)' = B'A' - A'B' ∵ A = A' and B = B ⇒ (AB - BA)' = BA - AB ⇒ (AB - BA)' = - (AB - BA) Since for skew-symmetric matrices, A = - A' Hence (AB' - BA') is Skew symmetric matrix. |
|
| 11. |
Find the (adj A), ifA = \(\rm \begin{bmatrix} 3& 7& 1 \\ 2& 1& 8\\ 4& 5& 0\end{bmatrix}\)1. \(\rm \begin{bmatrix} -40& 32& 55 \\ 5& -4& 13\\ 55& -22& -11\end{bmatrix}\)2. \(\rm \begin{bmatrix} 3& 7& 1 \\ 2& 1& 8\\ 4& 5& 0\end{bmatrix}\)3. \(\rm \begin{bmatrix} -40& 32& 6 \\ 5& -4& 13\\ 55& -22& -11\end{bmatrix}\)4. \(\rm \begin{bmatrix} -40& 5& 55\\ 32& -4& -22\\ 6& 13& -11\end{bmatrix}\) |
|
Answer» Correct Answer - Option 4 : \(\rm \begin{bmatrix} -40& 5& 55\\ 32& -4& -22\\ 6& 13& -11\end{bmatrix}\) Concept: If matrix A = [aij] The adj A matrix is the transpose of the matrix [Aij] is the cofactor of the element aij. Calculation: A = \(\rm \begin{bmatrix} 3& 7& 1 \\ 2& 1& 8\\ 4& 5& 0\end{bmatrix}\) Cof(a11) = 0 - 40 = -40 Cof(a12) = -(0 - 32) = 32 Cof(a13) = 10 - 4 = 6 Cof(a21) = -(0 - 5) = 5 Cof(a22) = 0 - 4 = -4 Cof(a23) = -(15 - 28) = 13 Cof(a31) = 56 - 1 = 55 Cof(a32) = -(24 - 2) = -22 Cof(a33) = 3 - 14 = -11 cof A = \(\rm \begin{bmatrix} -40& 32& 6 \\ 5& -4& 13\\ 55& -22& -11\end{bmatrix}\) Adj A = (cof A)T = \(\rm \begin{bmatrix} -40& 32& 6 \\ 5& -4& 13\\ 55& -22& -11\end{bmatrix}^T\) ⇒ Adj A = \(\rm \begin{bmatrix} -40& 5& 55\\ 32& -4& -22\\ 6& 13& -11\end{bmatrix}\) |
|
| 12. |
The rank of Matrix \(A =\left[ {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 1&0&0&0&1 \end{array}} \right]\) is _______.1. 22. 33. 44. 5 |
|
Answer» Correct Answer - Option 1 : 2 \(A = \;\left[ {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 1&0&0&0&1 \end{array}} \right]\) \(\left| {\rm{A}} \right| = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 0&1&1&1&0\\ 1&0&0&0&1 \end{array}} \right|\) R5 → R5 – R1 R3 → R3 – R2 R4 → R4 – R2 \(\left| {\rm{A}} \right| = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&0&0&0&1\\ 0&1&1&1&0\\ 0&0&0&0&0\\ 0&0&0&0&0\\ 0&0&0&0&0 \end{array}} \right|\) Rank of the matrix is 2 |
|
| 13. |
Find the inverse of the matrix \(\begin{bmatrix} 1& -3 \\ 4& 2 \end{bmatrix}\)1. \({1\over14}\begin{bmatrix} 2& -3 \\ 4& -1 \end{bmatrix}\)2. \({1\over14}\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}\)3. \({1\over14}\begin{bmatrix} 2& -3 \\ -4& 1 \end{bmatrix}\)4. \({1\over14}\begin{bmatrix} 2& 3 \\ 4& 1 \end{bmatrix}\) |
|
Answer» Correct Answer - Option 2 : \({1\over14}\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}\) Concept: For any matrix A, If matrix A = [aij] A-1 = \(\rm \text{(adj A)}\over|A|\) The adj A matrix is the transpose of the matrix [Aij] is the cofactor of the element aij. Calculation: A = \(\begin{bmatrix} 1& -3 \\ 4& 2 \end{bmatrix}\) = [aij] |A| = \(\begin{vmatrix} 1& -3 \\ 4& 2 \end{vmatrix}\) ⇒ |A| = 2 × 1 - (-3) × 4 ⇒ |A| = 14 Now, finding cofactor of matrix a11 = 1, cof(a11) = 2 a12 = -3, cof(a12) = -4 a21 = 4, cof(a21) = 3 a22 = 2, cof(a22) = 1 Cof(A) = \(\begin{bmatrix} 2& -4 \\ 3& 1 \end{bmatrix}\) adj(A) = [cof(A)]T adj(A) = \(\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}\) A-1 = \(\rm \text{(adj A)}\over|A|\) ⇒ A-1 = \(\boldsymbol{{1\over14}\begin{bmatrix} 2& 3 \\ -4& 1 \end{bmatrix}}\) |
|
| 14. |
If the matrix \(\rm A = \left [ \begin{array}{cc} \alpha & \beta \\ \beta & \alpha \end{array}\right ]\) is such that A2 = I, then which one of the following is correct? 1. α = 0, β = 1 OR α = 1, β = 02. α = 1, β = 1 OR α = 1, β = 03. α ≠ 1, β = 04. α = β = 0 |
|
Answer» Correct Answer - Option 1 : α = 0, β = 1 OR α = 1, β = 0 Calculation: Here, \(\rm A = \left [ \begin{array}{cc} α & β \\ β & α \end{array}\right ]\) \(\begin{array}{l} \therefore \rm A^{2}=A=\left[\begin{array}{ll} α & β \\ β & α \end{array}\right]\left[\begin{array}{ll} α & β \\ β & α \end{array}\right] \\ \end{array}\) \(=\left[\begin{array}{l} α^{2}+β^{2} & 2 α β\\ 2 α β &α^{2}+β^{2} \end{array}\right] \\ \text { Now } \rm A^{2}=I \\ \) \(\Rightarrow \left[\begin{array}{l} α^{2}+β^{2} & 2 α β \\ 2 α β& α^{2}+β^{2} \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \\ \\ \Rightarrow α^{2}+β^{2}=1, \quad α β=0\) Hence, option (1) is correct. |
|