InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    Consider the parabola `y=x^(2)+7x+2` and the straight line `y=3x-3`. The equation of the ellipse whose centre is at origin, major axis is along x-axis with eccentricity `3/4` and latus rectum 4 units isA. `x^(2)/1024+(7y^(2))/64=1`B. `(49x^(2))/1024+(7y^(2))/64=1`C. `(7x^(2))/1024+(49y^(2))/64=1`D. `(x^(2))/1024+(49y^(2))/64=1` | 
                            
| 
                                   
Answer» Correct Answer - B `"Given, "b^(2)=2a, c^(2)=(3/4)^(2)a^(2)=9/16a^(2)` `"We know, "a^(2)=b^(2)+c^(2)` So, `a^(2)=2a+9/16a^(2)rArr16a^(2)=32a+9a^(2)rArr7a^(2)=32arArra=32/7` `rArr a = 32/7` `:. b^(2)=64/7` Equation of ellipse is `x^(2)/a^(2)+y^(2)/b^(2)=1rArrx^(2)/(32/7)^(2)+y^(2)/(64/7)=1rArr(49x^(2))/(1024)+(7y^(2))/64=1`.  | 
                            |