InterviewSolution
Saved Bookmarks
| 1. |
` Cos { 2 pi/2^64 - 1) cos{2^2 pi/(2^64-1)}.........cos{2^64 pi/(2^64 - 1)}` = |
|
Answer» Let `(2pi)/(2^64-1) = theta` Then, our expression becomes, `costhetacos2thetacos4theta......cos(2^63)theta` `=1/(2sintheta)(2sinthetacosthetacos2thetacos4theta.....cos(2^63)theta)` `=1/(2sintheta)(sin2thetacos2thetacos4theta.....cos(2^63)theta)` `=1/(4sintheta)(2sin2thetacos2thetacos4theta.....cos(2^63)theta)` `=1/(4sintheta)(sin4thetacos4theta.....cos(2^63)theta)` Similarly, if we continue, we will get the required expression as, `=1/((2^64)sintheta)(sin(2^64)theta)` Putting value of `theta`, our expression becomes, `=1/((2^64)sin((2pi)/(2^64-1) ))(sin(2^64)((2pi)/(2^64-1) ))` `=1/((2^64)sin((2pi)/(2^64-1) ))(sin((2pi)/(2^64-1) ))` `=1/(2^64)` `=1/((2^4)^16) = 1/16^16` So, value of the given expression will be `1/16^16`. |
|