InterviewSolution
Saved Bookmarks
| 1. |
`cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)=(1)/(16)` |
|
Answer» True `" "LHS=cos""(2pi)/(15)cos""(4pi)/(15)cos""(8pi)/(15)cos""(16pi)/(15)` `" "=cos24^(@)cos48^(@)cos96^(@)cos192^(@)` `" "=(1)/(16sin24^(@))[(2sin24^(@)cos24^(@))(2cos48^(@))(2cos96^(@))(2cos192^(@))]` ltBrgt `" "=(1)/(16sin24^(@))[2sin48^(@)cos48^(@)(2cos96^(@))(2cos192^(@))]` `" "=(1)/(16sin24^(@))` `[(2sin96^(@)cos96^(@))(2cos192^(@))]` ` " "=(1)/(16sin24^(@))[2sin192^(@)cos192^(@)]` `" "=(1)/(16sin24^(@))sin384^(@)=(sin(360^(@)+24^(@)))/(16sin24^(@))` `" "=(1)/(16)=RHS" "` Hence proved |
|