InterviewSolution
Saved Bookmarks
| 1. |
`cos (pi/11) cos(2 pi/11) cos(3 pi/11) cos(4 pi/11) cos(5pi/11)` |
|
Answer» Here, we will use, `2sinxcosx = sin2x` Now, `cos(pi/11)cos((2pi)/11)cos((3pi)/11)cos((4pi)/11)cos((5pi)/11)` `=1/(2sin(pi/11))(2sin(pi/11)cos(pi/11)cos((2pi)/11)cos((3pi)/11)cos((4pi)/11)cos((5pi)/11))` `=1/(2sin(pi/11))(sin((2pi)/11)cos((2pi)/11)cos((3pi)/11)cos((4pi)/11)cos((5pi)/11))` `=1/(4sin(pi/11))(2sin((2pi)/11)cos((2pi)/11)cos(pi-(8pi)/11))cos((4pi)/11)cos((5pi)/11))` `=1/(4sin(pi/11))(sin((4pi)/11)cos((4pi)/11)cos(-(8pi)/11)cos((5pi)/11))` `=-1/(8sin(pi/11))(2sin((4pi)/11)cos((4pi)/11)cos((8pi)/11)cos((5pi)/11))` `=-1/(8sin(pi/11))(sin((8pi)/11)cos((8pi)/11)cos((5pi)/11))` `=1/(16sin(pi/11))(2sin((8pi)/11)cos((8pi)/11)cos(pi+(5pi)/11))` `=1/(16sin(pi/11))(sin((16pi)/11)cos((16pi)/11))` `=1/(32sin(pi/11))(2sin((16pi)/11)cos((16pi)/11))` `=1/(32sin(pi/11))(sin((32pi)/11))` `=1/(32sin(pi/11))(sin(3pi-(pi)/11))` `=1/(32sin(pi/11))(sin(pi/11))` `=1/32` so, value of the given expression is `1/32.` |
|