1.

`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))`

Answer» We have
`(1+sinx)={cos^(2)(x//2)+sin^(2)(x//2)+2sin(x//2)cos(x//2)}`
`={cos(x//2)+sin(x//2)}^(2).`
`(1-sinx)={cos^(2)(x//2)+sin^(2)(x//2)-2sin(x//2)cos(x//2)}`
`={cos(x//2)-sin(x//2)}^(2).`
`thereforesqrt(1+sinx)=sqrt({cos(x//2)+sin(x//2)}^(2))=cos((x)/(2))+sin((x)/(2))`
`andsqrt(1-sinx)=sqrt({cos(x//2)-sin(x//2)}^(2))=cos((x)/(2))-sin((x)/(2)).`
`thereforey=cot^(-1){([cos(x//2)+sin(x//2)]+[cos(x//2)-sin(x//2)])/([cos(x//2)+sin(x//2)]-[cos(x//2)-sin(x//2)])}`
`=cot^(-1){(2cos(x//2))/(2sin(x//2))}=cot^(-1){cot(x//2)}=(x)/(2)`
`rArr(dy)/(dx)=(d)/(dx)((x)/(2))=(1)/(2).`


Discussion

No Comment Found