1.

Determine `f(0)`so that the function `f(x)`defined by`f(x)=((4^x-1)^3)/(sinx/4log(1+(x^2)/3))`becomes continuous at `x=0`

Answer» `lim_(x->0) ((4^x - 1)^3)/(sin(x/4) log(1 + x^2/3))`
`(4^x - 1)^3= (e^(x ln4) - 1)^3 = (1 + xln 4 + (xln4)^2/2 ....-1)^3`
`e^t = 1 + t + t^2/2 + .......`
or `sin(x/4)/(x/4) [ log(1 + x^2/3)] xx x/4 `
or `= [x/3 + (x/3)^2 /2+ ....] xx pi/4`
now, `([xln 4 + (xln4)^2/2]^3)/(x/4* [(x^2/3)^2/2])`
`= (x^3(ln^3 4)/((x/4)(x^2/3)) = 12 (ln4)^3`
`f(0) = 12( ln 4)^3`
Answer


Discussion

No Comment Found

Related InterviewSolutions