InterviewSolution
Saved Bookmarks
| 1. |
Determine `f(0)`so that the function `f(x)`defined by`f(x)=((4^x-1)^3)/(sinx/4log(1+(x^2)/3))`becomes continuous at `x=0` |
|
Answer» `lim_(x->0) ((4^x - 1)^3)/(sin(x/4) log(1 + x^2/3))` `(4^x - 1)^3= (e^(x ln4) - 1)^3 = (1 + xln 4 + (xln4)^2/2 ....-1)^3` `e^t = 1 + t + t^2/2 + .......` or `sin(x/4)/(x/4) [ log(1 + x^2/3)] xx x/4 ` or `= [x/3 + (x/3)^2 /2+ ....] xx pi/4` now, `([xln 4 + (xln4)^2/2]^3)/(x/4* [(x^2/3)^2/2])` `= (x^3(ln^3 4)/((x/4)(x^2/3)) = 12 (ln4)^3` `f(0) = 12( ln 4)^3` Answer |
|