1.

Prove that \(f(x) = \begin{cases} 2-x, & \quad \text{when x <2;} \text{}\\ 2+x, & \quad \text{whenx≥2} \end{cases}\)  is discontinuous at x=2

Answer»

LHL: = \(\lim\limits_{x \to2^-} \)f(x) =  \(\lim\limits_{x \to2^-} \) 2 + x 

= 4

RHL: = \(\lim\limits_{x \to2^+} \)f(x) =  \(\lim\limits_{x \to2^+} \) 2 - x 

= 0

 = \(\lim\limits_{x \to2^-} \)f(x) ≠  \(\lim\limits_{x \to2^+} \) f(x)

f(x) is discontinuous at x=2



Discussion

No Comment Found

Related InterviewSolutions