InterviewSolution
Saved Bookmarks
| 1. |
Identify discontinuities if any for the following functions as either a jump or a removable discontinuity on their respective domains.f(x) = x2 + 5x + 1, for 0 ≤ x ≤ 3 = x2 + x + 5, for 3 < x ≤ 6 |
|
Answer» \(\lim\limits_{x\to3^-} f(x) = \lim\limits_{x\to3^-} (x^2+5x+1)\) = (3)2 + 5(3) + 1 = 9 + 15 + 1 = 25 \(\lim\limits_{x\to3^+} f(x) = \lim\limits_{x\to3^+} (x^3+x+5)\) = (3)3 + 3 + 5 = 27 + 3 + 5 = 35 ∴\(\lim\limits_{x\to3^-} f(x) \neq \lim\limits_{x\to3^+} f(x)\) ∴\(\lim\limits_{x\to3} f(x) \) does not exist. ∴ f(x) is discontinuous at x = 3. ∴ f(x) has a jump discontinuity at x = 3. |
|