1.

Identify discontinuities if any for the following functions as either a jump or a removable discontinuity on their respective domains.f(x) = x2 + 5x + 1, for 0 ≤ x ≤ 3 = x2 + x + 5, for 3 < x ≤ 6

Answer»

\(\lim\limits_{x\to3^-} f(x) = \lim\limits_{x\to3^-} (x^2+5x+1)\)

= (3)2 + 5(3) + 1 

= 9 + 15 + 1 

= 25

\(\lim\limits_{x\to3^+} f(x) = \lim\limits_{x\to3^+} (x^3+x+5)\)

= (3)3 + 3 + 5 

= 27 + 3 + 5 

= 35

\(\lim\limits_{x\to3^-} f(x) \neq \lim\limits_{x\to3^+} f(x)\)

\(\lim\limits_{x\to3} f(x) \) does not exist.

∴ f(x) is discontinuous at x = 3. 

∴ f(x) has a jump discontinuity at x = 3.



Discussion

No Comment Found

Related InterviewSolutions