1.

Prove that  \(f(x) = \begin{cases} 3-x, & \quad \text{when x ≤0;} \text{}\\ x^2, & \quad \text{whex>0} \end{cases}\)  is discontinuous at x = 0

Answer»

LHL: = \(\lim\limits_{x \to0^-} \)f(x) =  \(\lim\limits_{x \to0^-} \)  3 - x 

= 3

RHL: = \(\lim\limits_{x \to3^+} \)f(x) =  \(\lim\limits_{x \to3^+} \) x2 

= 0 

  \(\lim\limits_{x \to3^-} \)f(x) ≠  \(\lim\limits_{x \to3^+} \) f(x)

f(x) is discontinuous at x = 0



Discussion

No Comment Found

Related InterviewSolutions