InterviewSolution
Saved Bookmarks
| 1. |
Prove that \(f(x) = \begin{cases} 3-x, & \quad \text{when x ≤0;} \text{}\\ x^2, & \quad \text{whex>0} \end{cases}\) is discontinuous at x = 0 |
|
Answer» LHL: = \(\lim\limits_{x \to0^-} \)f(x) = \(\lim\limits_{x \to0^-} \) 3 - x = 3 RHL: = \(\lim\limits_{x \to3^+} \)f(x) = \(\lim\limits_{x \to3^+} \) x2 = 0 \(\lim\limits_{x \to3^-} \)f(x) ≠ \(\lim\limits_{x \to3^+} \) f(x) f(x) is discontinuous at x = 0 |
|