InterviewSolution
Saved Bookmarks
| 1. |
Differentiate 2(tanx)^cotx with respect to x.(a) 2 csc^2x.tanx^cotx (1-log(tanx))(b) csc^2x.tanx^cotx (1-log(tanx))(c) 2 csc^2x.tanx^cotx (1+log(tanx))(d) 2tanx^cotx (1-log(tanx))The question was asked in a job interview.This intriguing question originated from Logarithmic Differentiation topic in division Continuity and Differentiability of Mathematics – Class 12 |
|
Answer» CORRECT choice is (a) 2 CSC^2x.tanx^cotx (1-log(tanx)) Easy explanation: CONSIDER y=2(tanx)^cotx Applying log in both sides, logy=log2(tanx)^cotx logy=log2+log(tanx)^cotx logy=log2+cotx log(tanx) Differentiating both sides with respect to x, we get \(\frac{1}{y} \frac{DY}{dx}=0+\frac{d}{dx} \,(cotx) \,log(tanx)+cotx \frac{d}{dx} \,(log(tanx))\) \(\frac{1}{y} \frac{dy}{dx}=-csc^{2}x.log(tanx)+cotx.\frac{1}{tanx}.sec^{2}x\) \(\frac{dy}{dx} = y\left(-csc^{2x}.log(tanx)+\frac{(1+tan^{2x})}{tan^{2x}}\right)\) \(\frac{dy}{dx}\)=2(tanx)^cotx \(\left (-csc^{2x} log(tanx)+cot^{2x}+1 \right )\) \(\frac{dy}{dx}\)=2(tanx)^cotx \((-csc^{2x} log(tanx)+csc^{2x})\) \(\frac{dy}{dx}\)=2(tanx)^cotx (csc^2x (1-log(tanx)) ∴\(\frac{dy}{dx}\)=2 csc^2x.tanx^cotx (1-log(tanx)) |
|