InterviewSolution
Saved Bookmarks
| 1. |
Differentiate \(e^{4x^5}.2x^{logx^2}\) with respect to x.(a) \(e^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\)(b) \(4e^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\)(c) \(4e^{4x^5}.x^{logx^2-1} (10x^5-log2x^2)\)(d) \(x^{logx^2 -1} (10x^4+log2x^2)\)I had been asked this question during an online interview.The origin of the question is Logarithmic Differentiation topic in section Continuity and Differentiability of Mathematics – Class 12 |
|
Answer» RIGHT choice is (b) \(4E^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\) Explanation: Consider y=\(e^{4x^5}+2x^{logx^2}\) Applying log on both sides, we get logy=\(loge^{4x^5} \,+ \,log2x^{logx^2}\) logy=\(4x^5+logx^2 \,. \,log2x\) logy=\(4x^5+2 \,logx \,log2x\) Differentiating with respect to x, we get \(\frac{1}{y} \frac{DY}{dx}\)=\(20x^4+2(\frac{d}{dx} \,(logx) \,log2x+\frac{d}{dx} \,(log2x) \,logx)\) \(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+2\left (\frac{log2x}{x}+\frac{1}{2x}.2.logx\right )\) \(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x+logx)}{x}\) \(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x^2)}{x}\) \(\frac{dy}{dx}\)=\(y(20x^4+\frac{2(log2x^2)}{x})\) \(\frac{dy}{dx}\)=\(e^{4x^5}.2x^{logx^2} (20x^4+\frac{2(log2x^2)}{x})\) \(\frac{dy}{dx}\)=\(4e^{4x^5}.x^{logx^2 -1} (10x^5+log2x^2)\) |
|