1.

Differentiate `(e^(x^(2))tan^(-1)x)/(sqrt(1+x^(2)))` w.r.t. x.

Answer» Let `y=(e^(x^(2))tan^(-1)x)/(sqrt(1+x^(2)))." ...(i)"`
Taking logarithm on both sides of (i), we get
`logy=x^(2)+log(tan^(-1)x)-(1)/(2)log (1+x^(2))." …(ii)"`
On differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=2x+(1)/(tan^(-1)x).(1)/((1+x^(2)))-(1)/(2).(2x)/((1+x^(2))).`
`rArr(dy)/(dx)=y[2x+(1)/((1+x^(2))tan^(-1)x)-(x)/((1+x^(2)))]`
`=(e^(x^(2))tan^-1)/(sqrt(1+x^(2))).[2x+(1)/((1+x^(2))tan^(-1)x)-(x)/((1+x^(2)))].`


Discussion

No Comment Found