1.

Differentiate `(e^(x)cos^(3)x sin^(2)x)` w.r.t. x.

Answer» Let `y=e^(x)cos^(3)xsin^(2)x." …(i)"`
Taking logarithm on both sides of (i), we get
`logy=x+3 log cos x+2 log sin x." …(ii)"`
On differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=1+(3)/(cosx).(-sinx)+(2)/(sinx).cosx`
`rArr(dy)/(dx)=y.{1-3 tanx+2 cot x}`
`=(e^(x)cos^(3)xsin^(2)x)(1-3tanx+2cotx).`


Discussion

No Comment Found