1.

Differentiate each of the following w.r.t. x: (i)`(ax+b)^(m)" "(ii)(2x+3)^(5)" "(iii)sqrt(ax^(2)+2bx+c)`

Answer» (i) Let `y=(ax+b)^(m)`.
Putting `(ax+b)=t`, we get
`y=t^(m) and t=(ax+b)`
`rArr" "(dy)/(dt)=mt^(m-1)and (dt)/(dx)=a`
`rArr" "(dy)/(dx)=((dy)/(dt)xx(dt)/(dx))=(mt^(m-1)xxa)=mat^(m-1)=ma(ax+b)^(m-1)`
`therefore" "(d)/(dx)(ax+b)^(m)=ma(ax+b)^(m-1)`.
Let `y=(2x+3)^(5)`.
Putting `(2x+3)=t`, we get
`y=t^(5)and t=2x+3`
`rArr" "(dy)/(dt)=5t^(4)and (dt)/(dx)=2`
`rArr" "(dy)/(dx)=((dy)/(dt)xx(dt)/(dx))=10t^(4)=10(2x+3)^(4)`.
(iii) Let `y=sqrt(ax^(2)+2bx+c).`
Putting `(ax^(2)+2bx+c)=t`, we get
`rArr" "(dy)/(dx)=(1)/(2)t^(-1//2)=(1)/(2sqrtt)and (dt)/(dx)=(2ax+2b)=2(ax+b)`
`rArr" "(dy)/(dx)=((dy)/(dt)xx(dt)/(dx))=(1)/(2sqrtt)xx2(ax+b)`
`=((ax+b))/(sqrtt)=((ax+b))/(sqrt(ax^(2)+2bx+c)).`


Discussion

No Comment Found