InterviewSolution
Saved Bookmarks
| 1. |
Differentiate each of the following w.r.t. x : (i) `sin (logx), x gt0` (ii) `log(logx), xgt1` |
|
Answer» (i) Let `y=sin(logx)`. Putting `logx=t,` we get `y=sin t and t=logx` `rArr(dy)/(dx)=cost and (dt)/(dx)=(1)/(x)` `rArr(dy)/(dx)=((dy)/(dt)xx(dt)/(dx))=(costxx(1)/(x))=cos(logx)xx(1)/(x)=(cos(logx))/(x)`. Hence, `(d)/(dx){sin(logx)}=(cos(logx))/(x).` (ii) Let `y=log(logx)`. Putting `logx=t,` we get `y=logt and t=log x` `rArr(dy)/(dx)=(1)/(t)and (dt)/(dx)=(1)/(x)` `rArr(dy)/(dx)=((dy)/(dt)xx(dt)/(dx))=((1)/(t)xx(1)/(x))=((1)/(logx)xx(1)/(x))=(1)/((xlogx))`. `therefore(d)/(dx){log(logx)}=(1)/((xlogx)).` |
|