InterviewSolution
Saved Bookmarks
| 1. |
Differentiate \(log(cos(sin(e^{x^3})))\) w.r.t x.(a) –\(3x^2 \,e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)(b) \(3x^2 \,e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)(c) –\(3e^{x^3} \,cose^{x^3} \,cos(sine^{x^3})\)(d) –\(x^2 e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)The question was asked in an online quiz.Asked question is from Exponential and Logarithmic Functions in portion Continuity and Differentiability of Mathematics – Class 12 |
|
Answer» CORRECT option is (a) –\(3x^2 \,e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\) BEST EXPLANATION: Consider y=\(log(cos(sin(e^{x^3})))\) Differentiating w.r.t x by using CHAIN rule, we get \(\frac{dy}{dx}\)=\(\frac{d}{dx} (log(cos(sin(e^{x^3}))))\) \(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} \frac{d}{dx} (cos(sine^{x^3})))\) \(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3}) \frac{d}{dx}(sine^{x^3})))\) \(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3})(cose^{x^3}) \frac{d}{dx} (e^{x^3})))\) \(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3})(cose^{x^3})(e^{x^3}) \frac{d}{dx} {x^3}))\) \(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3}).cose^{x^3} .e^{x^3}.3x^2)\) \(\frac{dy}{dx}\)=-\((\frac{3x^2 e^{x^3} cose^{x^3} sin(sine^{x^3})}{cos(sine^{x^3})})\) \(\frac{dy}{dx}\)=-\(3x^2 e^{x^3} cose^{x^3} tan(sine^{x^3})\) |
|