1.

Differentiate `sqrt((x-1)(x-2)(x-3)(x-4))` w.r.t. x.

Answer» Let `y=sqrt((x-1)(x-2)(x-3)(x-4))." …(i)"`
Taking logarithm on both sides of (i), we get
`log y = (1)/(2){log(x-1)+logx(x-2)+log(x-3)+log(x-4)}……..(ii)`
On differentiating both sides of (ii) w.r.t. x we get
`(1)/(y).(dy)/(dx)=(1)/(2).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`
`(dy)/(dx)=((y)/(2)).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`
`=(1)/(2).sqrt((x-1)(x-2)(x-3)(x-4)).{(1)/((x-1))+(1)/((x-2))+(1)/((x-3))+(1)/((x-4))}`


Discussion

No Comment Found