1.

Differentiate w.r.t to x ,`(ax^(2)+cotx)(p+qcosx)`

Answer» Let `y=(ax^(2)+ cotx)(p+qcosx)`
`therefore (dy)/(dx) = (ax^(2)+cotx)d/(dy)(p+qcosx) + (p+qcosx)d/(dy)(ax^(2)+cotx)` [by product rule]
`=(ax^(2)+cotx)(-qsinx)+(p+qcosx)(2ax-"cosec"^(2)x)`
`=-qsinx(ax^(2)+cotx)+(p+qcosx)(2ax-"cosec"^(2)x)`


Discussion

No Comment Found