1.

Differentiate w.r.t. x: `(i)tan^(-1)((cosx)/(1+sinx))" "(ii)tan^(-1)(secx+tanx)`

Answer» Let `y=tan^(-1)((cos+1)/(1+sinx))=tan^(-1){(sin((pi)/(2)-x))/(1+cos((pi)/(2)-x))}`
`=tan^(-1){(2sin((pi)/(4)-(x)/(2))cos((pi)/(4)-(x)/(2)))/(2cos^(2)((pi)/(4)-(x)/(2))}}`
`tan^(-1){tan((pi)/(4)-(x)/(2))}=((pi)/(4)-(x)/(2)).`
`thereforey=((pi)/(4)-(x)/(2)).`
Hence,`(dy)/(dx)=(d)/(dx)((pi)/(4)-(x)/(2))=(d)/(dx)((pi)/(4))-(d)/(dx)((x)/(2))=(0-(1)/(2))=(-1)/(2).`
(ii) Let `y=tan^(-1)(sec x+tanx)`
`=tan^(-1)((1)/(cosx)+(sinx)/(cosx))=tan^(-1)((1+sinx)/(cosx))`
`=tan^(-1){(1-cos((pi)/(2)+x))/(sin((pi)/(2)+x))}`
`{because cos ((pi)/(2)+x)=-sinx,sin((pi)/(2)+x)=cosx}`
`=tan^(-1){(2sin^(2)((pi)/(4)+(x)/(2)))/(2sin((pi)/(4)+(x)/(2))cos((pi)/(4)+(x)/(2)))}`
`=tan^(-1){tan((pi)/(4)+(x)/(2))}=((pi)/(4)+(x)/(2)).`
`therefore y=((pi)/(4)+(x)/(2)).`
Hence, `(dy)/(dx)=(d)/(dx)((pi)/(4)+(x)/(2))=(d)/(dx)((pi)/(4))+(d)/(dx)((x)/(2))=(0+(1)/(2))=(1)/(2).`


Discussion

No Comment Found