InterviewSolution
Saved Bookmarks
| 1. |
Differentiate with respect to x, `(x^(5)-cosx)/(sinx)` |
|
Answer» Let `y=(x^(5)-cosx)/(sinx)` `therefore (dy)/(dx) = (sind/(dx)(x^(5)-cosx)-(x^(5)-cosx)d/(dx)sinx)/(sinx)^(2)` [By quotient rule] `=(sinx(5x^(4)+sinx)-(x^(5)-cosx)cosx)` `=(sinx(5x^(4)+sinx)-(x^(5)-cosx)cosx)/(sin^(2)x)` `=(5x^(4)sinx+sin^(2)x-x^(5)cosx+cos^(2)x)/(sin^(2)x)` `=(5x^(4)sinx-x^(5)cosx+1)/(sin^(2)x)` |
|