1.

Differentiate with respect to x, `(x^(5)-cosx)/(sinx)`

Answer» Let `y=(x^(5)-cosx)/(sinx)`
`therefore (dy)/(dx) = (sind/(dx)(x^(5)-cosx)-(x^(5)-cosx)d/(dx)sinx)/(sinx)^(2)` [By quotient rule]
`=(sinx(5x^(4)+sinx)-(x^(5)-cosx)cosx)`
`=(sinx(5x^(4)+sinx)-(x^(5)-cosx)cosx)/(sin^(2)x)`
`=(5x^(4)sinx+sin^(2)x-x^(5)cosx+cos^(2)x)/(sin^(2)x)`
`=(5x^(4)sinx-x^(5)cosx+1)/(sin^(2)x)`


Discussion

No Comment Found