1.

Differentiate `(x+1)^(2)(x+2)^(3)(x+3)^(4)` w.r.t. x.

Answer» Let `y=(x+1)^(2)(x+2)^(3)(x+3)^(4)." …(i)"`
Taking logarithm on both sides of (i), we get
`log y = 2log (x+1)+3log (x+2)+4 log (x+3)." …(ii)"`
Differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(2)/((x+1))+(3)/((x+2))+(4)/((x+3))`
`rArr(dy)/(dx)=y.[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))]`
`=(x+1)^(2)(x+2)^(3)(x+3)^(4).[(2)/((x+1))+(3)/((x+2))+(4)/((x+3))].`


Discussion

No Comment Found