1.

Differentiate `x^(x)` w.r.t. x.

Answer» Let `y=x^(x)." …(i)"`
Taking logarithm on both sides of (i), we get
`logy=x log x." …(ii)"`
On differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=x.(d)/(dx)(logx)+logx.(d)/(dx)(x)`
`=(x.(1)/(x)+logx.1)=(1+logx)`
`rArr(dy)/(dx)=y(1+logx)`
`rArr (dy)/(dx)=x^(x)(1+logx).`


Discussion

No Comment Found