1.

`(dy)/(dx)` ज्ञात कीजिए, यदि- `y=a^(t+1/t),x=(t+1/t)^(a)`

Answer» यहाँ `y=a^(t+1/t)`
`therefore(dy)/(dt)=d/(dt)(a^(t+1/t))`
`=a^(t+1/t)d/(dt)(t+1/t).loga`
`=a^(t+1/t)(1-1/(t^(2))).loga`
और `x=(t+1/t)^(a)`
`therefore(dx)/(dt)=a(t+1/t)^(a-1).d/(dt)(t+1/t)`
`=a(t+1/t)^(a-1).(1-1/(t^(2)))`
`(dx)/(dt)ne0` केवल यदि `tnepm1` अतः `tnepm1`
`(dy)/(dx)=((dy)/(dt))/((dx)/(dt))=(a^(t+1/t)(1-1/(t^(2)))loga)/(a(1+1/t)^(a-1)(1-1/(t^(2))))`
`rArr(dy)/(dx)=(a^(t+1/t)loga)/(a(t+1/t)^(a-1))`


Discussion

No Comment Found