InterviewSolution
Saved Bookmarks
| 1. |
`e^(x) sin x+x^(p) tan x+a^(x) log_(a) x` का x के सापेक्ष अवलंकन गुणांक ज्ञात कीजिएः |
|
Answer» माना `y=e^(x)sin x+x^(p)tan x+a^(x)log_(a)x` `therefore (dy)/(dx)=(d)/(dx)(e^(x)sin x)+(d)/(dx)(x^(p)tan x)+(d)/(dx)(a^(x)log_(ax)` `=(e^(x)(d)/(dx)sinx+sin x(d)/(dx)e^(x))+(x^(p)(d)/(dx)tanx+tan x(d)/dxa^(p))+(a^(x)(d)/(dx)log_(a)x+log_(a)x(d)/(dx)a^(x))` `=(e^(x)cos x+e^(x) sin x)+(x^(p)sec^(w)x+px^(p-1)tan x)+(a^(x)(1)/(x)log_(a)e+a^(x)log_(e)a.log_(a)x)` `=e^(x)(cos x+sinx )+x^(p-1)(x sec^(2)x+p tan x)+a^(x)((1)/(x)log_(a)e+log_(e)a.log_(a)x)` |
|