1.

Evaluate : ∫ 1/(x(1+logx))dx\(\int\frac{1}{x(1+log\,x)}\) dx

Answer»

Given,

∫ 1/(x(1+logx))dx

Let 1+log x = t

⇒ \(\frac{d}{dx}\) (1 + logx) = dt

⇒ \(\frac{1}{x}\) dx = dt

\(\int\frac{1}{t}\) dt

= logt +c 

= log (1+logx)+c



Discussion

No Comment Found