InterviewSolution
Saved Bookmarks
| 1. |
Evaluate `cosacos2acos3a cos 999 a ,`where `a=(2pi)/(1999)dot` |
|
Answer» Let `P = cosacos2acos3a...cos999a` Let `Q = sinasin2asin3a...sin999a` Then, `2^999PQ = (2sinacosa)(2sin2acos2a)...(2sin999acos999a)` `= sin2asin4a...sin1996asin1998a` `=(sin2asin4a...sin998a)((-sin(2pi-1000a))(-sin(2pi-1002a))...(-sin(2pi-1998a)))`...[As `-sin(2pi-theta) = sintheta`] `=(sin2asin4a...sin998a)((-sin(2pi-1000((2pi)/1999)))(-sin(2pi-1002((2pi)/1999))))...(-sin(2pi-1998((2pi)/1999)))))`...[As `a = (2pi)/1999`] `=(sin2asin4a...sin998a)((-sin((2pi)/1999(999)))(-sin((2pi)/1999(997)))...(-sin((2pi)/1999)))` `=(sin2asin4a...sin998a)(sin999asin997a...sin3asina)` `=>2^999PQ = sinasin2asin3a...sin999a` `=>2^999PQ = = Q` `=>P = 1/(2^(999))` `:. cosacos2acos3a...cos999a = 1/(2^(999))` |
|