1.

Evaluate : (i) `int(dx)/(1+sqrt(x))` (ii) `int(x+sqrt(x+1))/(x+2)dx`

Answer» (i) Put `sqrt(x)=t` so that `x=t^(2)anddx=2tdt`.
`:.int(dx)/(1+sqrt(x))=int(2t)/((1+t))dt=int(2(1+t)-2)/((1+t))dt`
`=2intdt-2int(dt)/((1+t))=2t-2log|1+t|+C`
`=2sqrt(x)-2log|1+sqrt(x)|+C`.
(ii) Put `sqrt(x+1)=t` so that `x+1=t^(2) and dx=2tdt`.
`:.int(x+sqrt(x+1))/((x+2))dx=2int((t^(2)-1+t)t)/((t^(2)+1))dt`
`=2int((t^(3)+t^(2)-t)/(t^(2)+1))dt`
`=2int(t+1-(2t+1)/(t^(2)+1))dt" [by division]"`
`=2int(t+1-(2t)/(t^(2)+1)-(1)/(t^(2)+1))dt`
`=2inttdt+2intdt-2int(2t)/(t^(2)+1)dt-2int(1)/(t^(2)+1)dt`
`=t^(2)+2t-2log|t^(2)+1|-2tan^(-1)t+C`
`=(x+1)+2sqrt(x+1)-2log|x+2|-2tan^(-1)sqrt(x+1)+C`.


Discussion

No Comment Found