InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : (i) `intcos^(-1)xdx` (ii) `inttan^(-1)xdx` (iii) `intsec^(-1)xdx` |
|
Answer» (i) Put `cos^(-1)x=t" so that "x=cost anddx=-sintdt`. `:.intcos^(-1)xdx=-inttsintdt` `=-[t*(-cost)-int*(-cost)dt]` [integrating by parts] `=tcost-intcostdt=tcost-sint+C` `=xcos^(-1)x-sqrt(1-x^(2))+C` `[becausecost=xrArrsint=sqrt(1-x^(2))]`. (ii) Put `tan^(-1)x=t" so that "x=tant anddx=sec^(2)tdt`. `:.inttan^(-1)xdx=inttsec^(2)tdt` `=t*tant-int1*tantdt" "` [integrating by parts] `=t*tant+log|cost|+C` `=(tan^(-1)x)*x+log|(1)/(sqrt(1+x^(2)))|+C` `[becausetant=xrArrcost=(1)/(sqrt(1+x^(2)))]` `=x(tan^(-1)x)-(1)/(2)log|1+x^(2)|+C`. (iii) Put `sec^(-1)x=t" so that"x=sectanddx=sec t tantdt`. `:.intsec^(-1)xdx=intt(sec t tan t)dt` `=t(sect)-int1*sect dt" "` [integrating by parts] `=t(sect)-log|sec t+tant|+C` `=t(sect)-log|sect+sqrt(sec^(2)t-1)|+C` `=x(sec^(-1)x)-log|x+sqrt(x^(2)-1)|+C`. |
|