1.

Evaluate: \(\int\cfrac{cosx}{(1+sin^2x)}dx\)∫ cos x/(1-sin2x)dx

Answer»

To find: \(\int\cfrac{cosx}{(1+sin^2x)}dx\)

Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+C\)

Let y = sin x … (1)

Differentiating both sides, we get

dy = cos x dx

Substituting in given equation,

\(\Rightarrow\)\(\int\cfrac{dy}{1+y^2}\)

⇒ tan-1 y

From (1),

⇒ tan-1 (sin x)

Therefore,

\(\int\cfrac{cosx}{(1+sin^2x)}dx=tan^{-1}(sinx)+C\)



Discussion

No Comment Found