InterviewSolution
Saved Bookmarks
| 1. |
Evaluate: \(\int\cfrac{cosx}{(1+sin^2x)}dx\)∫ cos x/(1-sin2x)dx |
|
Answer» To find: \(\int\cfrac{cosx}{(1+sin^2x)}dx\) Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+C\) Let y = sin x … (1) Differentiating both sides, we get dy = cos x dx Substituting in given equation, \(\Rightarrow\)\(\int\cfrac{dy}{1+y^2}\) ⇒ tan-1 y From (1), ⇒ tan-1 (sin x) Therefore, \(\int\cfrac{cosx}{(1+sin^2x)}dx=tan^{-1}(sinx)+C\) |
|