InterviewSolution
Saved Bookmarks
| 1. |
Evaluate: \(\int\cfrac{dx}{(e^x+e^{-x})}\)∫ dx/(ex + e-x) |
|
Answer» To find: \(\int\cfrac{dx}{(e^x+e^{-x})}\) Formula Used:\(\int\cfrac{dx}{1+x^2}=tan^{-1}x\) Given equation is: \(\int\cfrac{dx}{(e^x+e^{-x})}=\int\cfrac{e^x dx}{(e^2x+1)}\)....(1) Let y = ex … (1) Differentiating both sides, we get dy = ex dx Substituting in (1), \(\int\cfrac{dy}{y^2+1}\) ⇒ tan-1 y From (1), ⇒ tan-1 (ex) Therefore, \(\int\cfrac{dx}{(e^x+e^{-x})}=tan^{-1}(e^x)+c\) |
|