1.

Evaluate: \(\int\cfrac{dx}{(e^x+e^{-x})}\)∫ dx/(ex + e-x)

Answer»

To find: \(\int\cfrac{dx}{(e^x+e^{-x})}\)

Formula Used:\(\int\cfrac{dx}{1+x^2}=tan^{-1}x\)

Given equation is:

\(\int\cfrac{dx}{(e^x+e^{-x})}=\int\cfrac{e^x dx}{(e^2x+1)}\)....(1)

Let y = ex … (1)

Differentiating both sides, we get

dy = ex dx

Substituting in (1),

\(\int\cfrac{dy}{y^2+1}\)

⇒ tan-1 y

From (1),

⇒ tan-1 (ex)

Therefore,

\(\int\cfrac{dx}{(e^x+e^{-x})}=tan^{-1}(e^x)+c\)



Discussion

No Comment Found