InterviewSolution
Saved Bookmarks
| 1. |
Evaluate: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)∫ sin x/(1+cos2x)dx |
|
Answer» To find: \(\int\cfrac{sinx}{(1+cos^2x)}dx\) Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+c\) Let y = cos x … (1) Differentiating both sides, we get dy = –sin x dx Substituting in given equation, \(\Rightarrow\)\(\int\cfrac{-dy}{1+y^2}\) ⇒ – tan -1 y From (1), ⇒ –tan -1 (cos x) Therefore, \(\int\cfrac{sinx}{1+cos^2x}dx=-tan^{-1}{(cosx)}+C\) |
|