1.

Evaluate: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)∫ sin x/(1+cos2x)dx

Answer»

To find: \(\int\cfrac{sinx}{(1+cos^2x)}dx\)

Formula Used: \(\int\cfrac{dx}{a^2+x^2}=\cfrac{1}{a}tan^{-1}(\cfrac{x}{a})+c\)

Let y = cos x … (1)

Differentiating both sides, we get 

dy = –sin x dx 

Substituting in given equation,

\(\Rightarrow\)\(\int\cfrac{-dy}{1+y^2}\)

⇒ – tan -1 y 

From (1), 

⇒ –tan -1 (cos x) 

Therefore,

\(\int\cfrac{sinx}{1+cos^2x}dx=-tan^{-1}{(cosx)}+C\)



Discussion

No Comment Found