InterviewSolution
Saved Bookmarks
| 1. |
Evaluate `int(cosx)/((sin^(2)x+4sinx+5))dx`. |
|
Answer» Putting `sinx=t " and "cosx dx=dt` we get `int(cosx)/((sin^(2)x+4sinx+5))dx=int(dt)/((t^(2)+4t+5))=int(dt)/({(t^(2)+4t+4)+1}}` `=int(dt)/({(t+2)^(2)+1^(2)}}=int(du)/((u^(2)+1)), "where "u=(t+2)` `=tan^(-1)u+C=tan^(-1)(t+2)+C` `=tan^(-1)(sinx+2)+C`. |
|