1.

`int(x^(2))/((x^(2)+6x-3))dx`

Answer» Correct Answer - `x-3log|x^(2)+6x-3|+(7sqrt(3))/(4)log|(x+3-2sqrt(3))/(x+3+2sqrt(3))|+C`
On dividing `x^(2)` by `(x^(2)+6x-3)` , we get
`I=int{1-(6x-3)/(x^(2)+6x-3)}dx=x-3int((2x-1))/((x^(2)+6x-3))dx`.
Let `(2x-1)=A*(d)/(dx)(x^(2)+6x-3)+BrArr(2x-1)=A(2x+6)+B`.


Discussion

No Comment Found