1.

`int (dx)/((4sin^(2)x+5cos^(2)x))=?`

Answer» On dividing the numerator and denominator by `cos^(2)x` , we get
`int(dx)/((4sin^(2)x+5cos^(2)x))=int(sec^(2)x)/((4tan^(2)x+5))dx`
`=int(dt)/(4t^(2)+5)` [ putting tan x = t]
`=(1)/(4)int(dt)/((t^(2)+(5)/(4)))=(1)/(4)*int(dt)/([t^(2)+(sqrt(5)/(2))^(2)])`
`=(1)/(4)*(1)/((sqrt(5)/(2)))tan^(-1)(t)/((sqrt(5)/(2)))+C`
`=(1)/(2sqrt(5))tan^(-1)((2t)/(sqrt(5)))+C=(1)/(2sqrt(5))tan^(-1)((2tanx)/(sqrt(5)))+C`.


Discussion

No Comment Found