1.

Evaluate:\(\int\frac{(1+tan\,x)}{(1-tan\,x)}dx\)∫(1 + tanx)/(1 - tanx)dx

Answer»

\(\frac{1+tan\,x}{1-tan\,x}\) = \(\frac{cos\,x+sin\,x}{cos\,x-sin\,x}\)

\(\int\frac{cos\,x+sin\,x}{cos\,x-sin\,x}dx\)

Let cos x - sin x = t 

-(sin x + cos x)dx = dt

\(\int\frac{-dt}{t}\) = - int + c

\(\int\frac{1+tan\,x}{1-tan\,x}dx\) = - In[cosx - sinx] + c



Discussion

No Comment Found