InterviewSolution
Saved Bookmarks
| 1. |
Evaluate:\(\int\frac{(1+tan\,x)}{(1-tan\,x)}dx\)∫(1 + tanx)/(1 - tanx)dx |
|
Answer» \(\frac{1+tan\,x}{1-tan\,x}\) = \(\frac{cos\,x+sin\,x}{cos\,x-sin\,x}\) \(\int\frac{cos\,x+sin\,x}{cos\,x-sin\,x}dx\) Let cos x - sin x = t -(sin x + cos x)dx = dt \(\int\frac{-dt}{t}\) = - int + c \(\int\frac{1+tan\,x}{1-tan\,x}dx\) = - In[cosx - sinx] + c |
|