InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : `int(logx)^(2)dx`. |
|
Answer» Integrating by parts, taking `(logx)^(2)` as the first function and 1 as the second function, we get `int(logx)^(2)dx=int{(logx)^(2)*1}dx` `=(logx)^(2)*intdx-int{(d)/(dx)(logx)^(2)*int1dx}dx` ]`=x(logx)^(2)-int((2logx)/(x)*x)dx` `=x(logx)^(2)-2int(logx*1)dx` `=x(logx)^(2)-2[(logx)intdx-int{(d)/(dx)(logx)*intdx}dx]` `=x(logx)^(2)-2[xlogx-int(1)/(x)*xdx]` `=x(logx)^(2)-2xlogx+2x+C`. |
|