1.

Evaluate : `int(logx)^(2)dx`.

Answer» Integrating by parts, taking `(logx)^(2)` as the first function and 1 as the second function, we get
`int(logx)^(2)dx=int{(logx)^(2)*1}dx`
`=(logx)^(2)*intdx-int{(d)/(dx)(logx)^(2)*int1dx}dx`
]`=x(logx)^(2)-int((2logx)/(x)*x)dx`
`=x(logx)^(2)-2int(logx*1)dx`
`=x(logx)^(2)-2[(logx)intdx-int{(d)/(dx)(logx)*intdx}dx]`
`=x(logx)^(2)-2[xlogx-int(1)/(x)*xdx]`
`=x(logx)^(2)-2xlogx+2x+C`.


Discussion

No Comment Found