1.

Evaluate `int sin(logx)dx`.A. `(1)/(2)xsinlogx+(1)/(2)xcos(logx)+C`B. `(1)/(2)xsinlogx-(1)/(2)xcos(logx)+C`C. `-(1)/(2)xsin(logx)+(1)/(2)xcos(logx)+C`D. none of these

Answer» Correct Answer - B
`I=int{sinunderset(I)((logx))*underset(II)1}dx=(sinlogx)x-int(cos(logx))/(x)*xdx`
`=xsin(logx)-int{cosunderset(I)((logx))*underset(II)(1)}dx`
`=xsin(logx)-cos(logx)*x+int(-sin(logx))/(x)*xdx`
`:." "2I=xsin(logx)-xcos(logx)-C`


Discussion

No Comment Found