InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : `intx^(2)sinxdx`. |
|
Answer» Integrating by parts, taking `x^(2)` as the first function, we get `intx^(2)sinxdx=x^(2)intsinxdx-int[(d)/(dx)(x^(2))*intsinxdx]dx` `=x^(2)(-cosx)-int2x(-cosx)dx` `=-x^(2)cosx+2intxcosxdx` `=-x^(2)cosx+2[x(sinx)-int{(d)/(dx)(x)*intcosxdx}dx]` [integrating x cos x by parts] `=-x^(2)cosx+2[xsinx-intsinxdx]` `=-x^(2)cosx+2[xsinx+cosx]+C`. |
|