InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : `intx^(n)logxdx`. |
|
Answer» (i) Integrating by parts, taking x as the first function, we get `intx^(n)logx=(logx)*intx^(n)dx-int{(d)/(dx)(logx)*intx^(n)dx}dx` `=(logx)*(x^(n+1))/((n+1))-int(1)/(x)*(x^(n+1))/((n+1))dx` `=(x^(n+1)logx)/((n-1))-(1)/((n+1))intx^(n)dx` `=(x^(n+1)logx)/((n-1))-(x^(n+1))/((n+1)^(2))+C`. |
|