InterviewSolution
Saved Bookmarks
| 1. |
Evaluate ∫ log(logx)/x dx\(\int\frac{ log\,(log\,x)}{x}\)dx |
|
Answer» ∫ log(logx)/x dx Let, log x = t Differentiating both side with respect to t, \(\frac{1}{x}\frac{dx}{dt}\) = 1 ⇒ \(\frac{dx}{x}\) = dt Note :- Always use direct formula for ∫log x dx y = ∫log t dt y = t log t – t + c Again, Put t = log x y = (log x)log(log x) – log x + c |
|