1.

Evaluate the following integrals: ∫ 2x3\(e^{x^2}\)dx

Answer»

Let I = ∫ 2x3\(e^{x^2}\)dx

Put x= t 

2xdx = dt

I = \(\int t\,e^tdt\)

Using integration by parts,

\(t\int e^tdt\) - \(\int\frac{d}{dt}t\int e^t\,dt\)

We have,

\(\int e^xdx\) = ex

= tet - et + c

= et(t - 1) + c

Substitute value for t,

I = \(e^{x^2}\)(x2 - 1) + c



Discussion

No Comment Found