InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the following integrals: ∫ 2x3\(e^{x^2}\)dx |
|
Answer» Let I = ∫ 2x3\(e^{x^2}\)dx Put x2 = t 2xdx = dt I = \(\int t\,e^tdt\) Using integration by parts, = \(t\int e^tdt\) - \(\int\frac{d}{dt}t\int e^t\,dt\) We have, \(\int e^xdx\) = ex = tet - et + c = et(t - 1) + c Substitute value for t, I = \(e^{x^2}\)(x2 - 1) + c |
|