InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the following integrals : ∫ cotx log sinx dx |
|
Answer» Assume, log(sinx) = t d(log(sinx)) = dt ⇒ \(\frac{cosx}{sinx}\)dx = dt ⇒ cot x dx = dt Substituting the values oft and dt we get ⇒ \(\int\)t dt ⇒ \(\frac{t^2}{2}\) + c But, t = log(sinx) ⇒ \(\frac{log(sin\,x)^2x}{2}\) + c. |
|