1.

Evaluate the following integrals : ∫ cotx log sinx dx

Answer»

Assume,

log(sinx) = t 

d(log(sinx)) = dt 

⇒ \(\frac{cosx}{sinx}\)dx = dt

⇒ cot x dx = dt 

Substituting the values oft and dt we get

⇒ \(\int\)t dt

⇒ \(\frac{t^2}{2}\) + c

But,

t = log(sinx)

⇒ \(\frac{log(sin\,x)^2x}{2}\) + c.



Discussion

No Comment Found