1.

Evaluate the following integrals :\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx

Answer»

Let ,

x = tanθ 

So, 

dx = sec 2θ dθ 

And,

θ  = tan-x

Putting above values,

\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx 

\(\int\frac{\sqrt{1+tam^2\theta}}{tan^4\theta}\) sec2θ dθ

= ∫ sec2θ/tan2θ dθ

= ∫ cosec2θ dθ

= - cotθ + c

Put,

θ =  tan-x

= - cotθ + c

= - cot tan-x + c



Discussion

No Comment Found