InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the following integrals :\(\int\frac{\sqrt{1+x^2}}{x^4}\)dx |
|
Answer» Let , x = tanθ So, dx = sec 2θ dθ And, θ = tan-x Putting above values, \(\int\frac{\sqrt{1+x^2}}{x^4}\)dx = \(\int\frac{\sqrt{1+tam^2\theta}}{tan^4\theta}\) sec2θ dθ = ∫ sec2θ/tan2θ dθ = ∫ cosec2θ dθ = - cotθ + c Put, θ = tan-x = - cotθ + c = - cot tan-x + c |
|