1.

Evaluate the following limit: `lim_(nto oo)[(n!)/(n^(n))]^(1//n)`A. eB. `1/e`C. `pi/4`D. `4/pi`

Answer» Correct Answer - B
Let `P=underset(nrarroo)(lim)[(n!)/(n^(n))]^(1//n)=underset(nrarroo)(lim)[(1)/(n).(2)/(n).(3)/(n).(4)/(n).(n)/(n)]^(1//n)`
`therefore" "logP=underset(nrarroo)(lim)(1)/(n)[log.(1)/(n)+log.(2)/(n)+…+log.(n)/(n)]`
`rArr" "logP=underset(nrarroo)(lim)sum_(=1)^(n)(1)/(n)log(r)/(n)`
`rArr" "logP=int_(0)^(1)log x dx=x [xlogx-x]_(0)^(1)=-1`
`rArr" "P=e^(-x)=(1)/(e)`


Discussion

No Comment Found