1.

Evaluate : ∫ (x+cos6x)/(3x2 + sin6x)dx\(\int\frac{x+cos\,6x}{3x^2+sin\,6x}\)dx

Answer»

Given,

∫ (x+cos6x)/(3x2 + sin6x)dx

Let 3x2 + sin6x = t

⇒ \(\frac{d}{dx}\) (3x2 + sin6x) = dt

⇒ 6x + cos 6x. 6 = dt

⇒ x + cos 6x = \(\frac{dt}{6}\)

Substituting the values,

\(\int\frac{1}{6t}\) dt

= \(\frac{1}{6}\)log t +c 

= \(\frac{1}{6}\)log(3x2 + sin6x) +c



Discussion

No Comment Found