InterviewSolution
Saved Bookmarks
| 1. |
Evaluate : ∫ (x+cos6x)/(3x2 + sin6x)dx\(\int\frac{x+cos\,6x}{3x^2+sin\,6x}\)dx |
|
Answer» Given, ∫ (x+cos6x)/(3x2 + sin6x)dx Let 3x2 + sin6x = t ⇒ \(\frac{d}{dx}\) (3x2 + sin6x) = dt ⇒ 6x + cos 6x. 6 = dt ⇒ x + cos 6x = \(\frac{dt}{6}\) Substituting the values, = \(\int\frac{1}{6t}\) dt = \(\frac{1}{6}\)log t +c = \(\frac{1}{6}\)log(3x2 + sin6x) +c |
|