1.

Examples: `int_(-pi/2) ^(pi/2) sin^2x dx`

Answer» Let `f(x)=sin^(2)x`.
Then, `f(-x)=[sin(-x)^(2)]=(-sinx)^(2)=sin^(2)x=f(x)`.
`:.f(x)` is an even function.
So, `int_(-pi//2)^(pi//2)sin^(2)xdx=2int_(0)^(pi//2)sin^(2)xdx=2int_(0)^(pi//2)((1-cos2x)/(2))dx`
`=int_(0)^(pi//2)(1-cos2x)dx=[x-(sin2x)/(2)]_(0)^(pi//2)=(pi)/(2)`.


Discussion

No Comment Found