

InterviewSolution
Saved Bookmarks
1. |
`f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):}`` at x = (pi)/(2)` . |
Answer» `f(pi//2) = 3 ` R.H.L = `underset(x to (pi^(+))/(2))("lim") f(x) = underset(x to 0)("lim")f((pi)/(2) + h)` `= underset(h to 0)("lim") (k cos ((pi)/(2) + h))/(pi -2 ((pi)/(2) + h)) = underset(h to 0)("lim") (-k sin h)/(-2h) = (k)/(2)` `(because underset(h to 0)("lim") (sinh)/(h) =1)` and L.H.L =` underset(x to pi//2^(2))(lim)f(x)= underset(h to 0)(lim)f((pi)/(2)-h)` `underset (h to 0)(lim)(k cos((pi)/(2)-h))/(pi-2((pi)/(2)-h))` `= underset(h to 0 )(lim)(k sin h)/(2h)= (k)/(2)` `because` Function is continuous at x = (`pi)/(2)`. `:.` R.H.L. = `f ((pi)/(2)) = LI. ` `rArr (k)/(2) = 3 rArr k = 6` |
|