1.

If `x=sin^-1""(2t)/(1+t^2)` and `y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.`

Answer» `x=sin^-1""(2t)/(1+t^2)=sin^-1""(2 tan theta)/(1+tan ^2)`
`=sin ^-1(sin 2 theta)`
`2 theta=2tan^-1 t`
Let t= tan `theta `
`rArr dxdy=(2)/(1+t^2)`
and `y =tan ^-1""(2t)/(1-t^2)=2 tan ^-1 t `
`rArr dy/dx =2/(1+t^2)`
`therefore (dx)/(dy)=(dy//dt)/(dx//dt)=(2//(1+t^2))/(2//(1+t^2))=1.`


Discussion

No Comment Found