1.

Let `f(x)={{:(-3+|x|",",-ooltxlt1),(a+|2-x|",",1lexltoo):}` and `g(x)={{:(2-|-x|",",-ooltxlt2),(-b+"sgn(x),",2lexltoo):}` where sgn(x) denotes signum function of x. If `h(x)=f(x)+g(x)` is discontinuous at exactly one point, then which of the following is not possible?A. `a=-3,b=0`B. `a=0,b=1`C. `a=2,b=1`D. `a=-3,b=1`

Answer» Correct Answer - D
`h(x)=f(x)+g(x)`
`={{:(-1",",-ooltxlt1),(a+4-2x",",1lexlt2),(a-b-1+x",",2lexltoo):}`
`therefore" We must have either "a=-3, b ne 1 or b=1, a ne -3`


Discussion

No Comment Found